Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Separable electromagnetic perturbations of rotating black holes (2011.03548v3)

Published 6 Nov 2020 in gr-qc and hep-th

Abstract: We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy the Teukolsky equation, and are related to the Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the GHP formalism, avoids the need for a mode ansatz and leads to potentials that represent both static and non-static solutions. As an explicit example, we specialise the procedure to mode-decomposed perturbations of Kerr spacetime and in the process make connections with previous results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Saul A. Teukolsky, “Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett. 29, 1114–1118 (1972).
  2. P. L. Chrzanowski, “Vector Potential and Metric Perturbations of a Rotating Black Hole,” Phys. Rev. D11, 2042–2062 (1975).
  3. L. S. Kegeles and J. M. Cohen, “Constructive procedure for perturbations of space-times,” Phys. Rev. D19, 1641–1664 (1979).
  4. Robert M. Wald, “Construction of Solutions of Gravitational, Electromagnetic, Or Other Perturbation Equations from Solutions of Decoupled Equations,” Phys. Rev. Lett. 41, 203–206 (1978).
  5. B.F. Whiting and L.R. Price, “Metric reconstruction from Weyl scalars,” Class. Quant. Grav. 22, S589–S604 (2005).
  6. Adam Pound, Cesar Merlin,  and Leor Barack, “Gravitational self-force from radiation-gauge metric perturbations,” Phys. Rev. D89, 024009 (2014), arXiv:1310.1513 [gr-qc] .
  7. John M. Stewart, “Hertz-Bromwich-Debye-Whittaker-Penrose Potentials in General Relativity,” Proc. Roy. Soc. Lond. A367, 527–538 (1979).
  8. Norichika Sago, Hiroyuki Nakano,  and Misao Sasaki, “Gauge problem in the gravitational selfforce. 1. Harmonic gauge approach in the Schwarzschild background,” Phys. Rev. D 67, 104017 (2003), arXiv:gr-qc/0208060 .
  9. Oleg Lunin, “Maxwell’s equations in the Myers-Perry geometry,” JHEP 12, 138 (2017), arXiv:1708.06766 [hep-th] .
  10. Valeri P. Frolov, Pavel Krtouš,  and David Kubizňák, “Separation of variables in Maxwell equations in Plebański-Demiański spacetime,” Phys. Rev. D 97, 101701 (2018a), arXiv:1802.09491 [hep-th] .
  11. Pavel Krtouš, Valeri P. Frolov,  and David Kubizňák, “Separation of Maxwell equations in Kerr–NUT–(A)dS spacetimes,” Nucl. Phys. B 934, 7–38 (2018), arXiv:1803.02485 [hep-th] .
  12. Valeri P. Frolov, Pavel Krtouš, David Kubizňák,  and Jorge E. Santos, “Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes,” Phys. Rev. Lett. 120, 231103 (2018b), arXiv:1804.00030 [hep-th] .
  13. Sam R. Dolan, “Instability of the Proca field on Kerr spacetime,” Phys. Rev. D 98, 104006 (2018), arXiv:1806.01604 [gr-qc] .
  14. Sam R. Dolan, “Electromagnetic fields on Kerr spacetime, Hertz potentials and Lorenz gauge,” Phys. Rev. D 100, 044044 (2019), arXiv:1906.04808 [gr-qc] .
  15. Tsuyoshi Houri, Norihiro Tanahashi,  and Yukinori Yasui, “On symmetry operators for the Maxwell equation on the Kerr-NUT-(A)dS spacetime,” Class. Quant. Grav. 37, 015011 (2020), arXiv:1908.10250 [gr-qc] .
  16. Robert P. Geroch, A. Held,  and R. Penrose, “A space-time calculus based on pairs of null directions,” J. Math. Phys. 14, 874–881 (1973).
  17. Larry Price, Ph.D. thesis, University of Florida (2007).
  18. Steffen Aksteiner, Ph.D. thesis, Leibniz U., Hannover (2014).
  19. Roger Penrose and Wolfgang Rindler, Spinors and Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 2011).
  20. Adam Pound and Barry Wardell, “Black hole perturbation theory and gravitational self-force,” in Handbook of Gravitational Wave Astronomy, Springer Reference, edited by Cosimo Bambi, Stavros Katsanevas,  and Kostantinos D. Kokkotas (Springer International Publishing, 2020).
  21. E.D. Fackerell and J.R. Ipser, “Weak electromagnetic fields around a rotating black hole,” Phys. Rev. D 5, 2455–2458 (1972).
  22. E. Newman, L. Tamburino,  and T. Unti, “Empty space generalization of the Schwarzschild metric,” J. Math. Phys. 4, 915 (1963).
  23. William Kinnersley, “Type D Vacuum Metrics,” J. Math. Phys. 10, 1195–1203 (1969).
  24. B. Carter and J. B. Hartle, “Gravitation in Astrophysics,” NATO Sci. Ser. B 156, pp.1–399 (1987).
  25. Stephen R. Green, Stefan Hollands,  and Peter Zimmerman, “Teukolsky formalism for nonlinear Kerr perturbations,” Class. Quant. Grav. 37, 075001 (2020), arXiv:1908.09095 [gr-qc] .
  26. Stefan Hollands and Vahid Toomani, “On the radiation gauge for spin-1 perturbations in Kerr-Newman spacetime,”   (2020), arXiv:2008.08550 [gr-qc] .
  27. Jose M. Martín-García, “xperm: fast index canonicalization for tensor computer algebra,” Comp. Phys. Commun. 179, 597–603 (2008).
  28. J.M. Martin-Garcia, “xAct: Efficient Tensor Computer Algebra for Mathematica,” http://xact.es/.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: