Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dynamical obstructions to classification by (co)homology and other TSI-group invariants (2004.07409v3)

Published 16 Apr 2020 in math.LO, math.AT, math.DS, and math.OA

Abstract: In the spirit of Hjorth's turbulence theory, we introduce "unbalancedness": a new dynamical obstruction to classifying orbit equivalence relations by actions of Polish groups which admit a two side invariant metric (TSI). Since abelian groups are TSI, unbalancedness can be used for identifying which classification problems cannot be solved by classical homology and cohomology theories. In terms of applications, we show that Morita equivalence of continuous-trace $C*$-algebras, as well as isomorphism of Hermitian line bundles, are not classifiable by actions of TSI groups. In the process, we show that the Wreath product of any two non-compact subgroups of $S_{\infty}$ admits an action whose orbit equivalence relation is generically ergodic against any action of a TSI group and we deduce that there is an orbit equivalence relation of a CLI group which is not classifiable by actions of TSI groups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.