Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Hessian polynomial and the Jacobian ideal of a reduced hypersurface in $\mathbb{P}^n$ (1910.09195v4)

Published 21 Oct 2019 in math.AG and math.AC

Abstract: For a reduced hypersurface $V(f) \subseteq \mathbb{P}n$ of degree $d$, the Castelnuovo-Mumford regularity of the Milnor algebra $M(f)$ is well understood when $V(f)$ is smooth, as well as when $V(f)$ has isolated singularities. We study the regularity of $M(f)$ when $V(f)$ has a positive dimensional singular locus. In certain situations, we prove that the regularity is bounded by $(d-2)(n+1)$, which is the degree of the Hessian polynomial of $f$. However, this is not always the case, and we prove that in $\mathbb{P}n$ the regularity of the Milnor algebra can grow quadratically in $d$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.