Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Variational Policy for Guiding Point Processes (1701.08585v4)

Published 30 Jan 2017 in cs.LG, cs.SI, cs.SY, and math.OC

Abstract: Temporal point processes have been widely applied to model event sequence data generated by online users. In this paper, we consider the problem of how to design the optimal control policy for point processes, such that the stochastic system driven by the point process is steered to a target state. In particular, we exploit the key insight to view the stochastic optimal control problem from the perspective of optimal measure and variational inference. We further propose a convex optimization framework and an efficient algorithm to update the policy adaptively to the current system state. Experiments on synthetic and real-world data show that our algorithm can steer the user activities much more accurately and efficiently than other stochastic control methods.

Citations (23)

Summary

We haven't generated a summary for this paper yet.