Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Holistic Object Recognition: Enriching Image Understanding with Part States (1612.07310v1)

Published 15 Dec 2016 in cs.CV

Abstract: Important high-level vision tasks such as human-object interaction, image captioning and robotic manipulation require rich semantic descriptions of objects at part level. Based upon previous work on part localization, in this paper, we address the problem of inferring rich semantics imparted by an object part in still images. We propose to tokenize the semantic space as a discrete set of part states. Our modeling of part state is spatially localized, therefore, we formulate the part state inference problem as a pixel-wise annotation problem. An iterative part-state inference neural network is specifically designed for this task, which is efficient in time and accurate in performance. Extensive experiments demonstrate that the proposed method can effectively predict the semantic states of parts and simultaneously correct localization errors, thus benefiting a few visual understanding applications. The other contribution of this paper is our part state dataset which contains rich part-level semantic annotations.

Citations (33)

Summary

We haven't generated a summary for this paper yet.