Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exact simulation of the genealogical tree for a stationary branching population and application to the asymptotics of its total length

Published 12 Dec 2016 in math.PR | (1612.03715v3)

Abstract: We consider a model of stationary population with random size given by a continuous state branching process with immigration with a quadratic branching mechanism. We give an exact elementary simulation procedure of the genealogical tree of $n$ individuals randomly chosen among the extant population at a given time. Then, we prove the convergence of the renormalized total length of this genealogical tree as $n$ goes to infinity, see also Pfaffelhuber, Wakolbinger and Weisshaupt (2011) in the context of a constant size population. The limit appears already in Bi and Delmas (2016) but with a different approximation of the full genealogical tree. The proof is based on the ancestral process of the extant population at a fixed time which was defined by Aldous and Popovic (2005) in the critical case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.