Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Series expansions for Maass forms on the full modular group from the Farey transfer operators (1607.03414v3)

Published 8 Jul 2016 in math.NT and math.DS

Abstract: We deepen the study of the relations previously established by Mayer, Lewis and Zagier, and the authors, among the eigenfunctions of the transfer operators of the Gauss and the Farey maps, the solutions of the Lewis-Zagier three-term functional equation and the Maass forms on the modular surface $PSL(2,\Z)\backslash \HH$. In particular we introduce an "inverse" of the integral transform studied by Lewis and Zagier, and use it to obtain new series expansions for the Maass cusp forms and the non-holomorphic Eisenstein series restricted to the imaginary axis. As corollaries we obtain further information on the Fourier coefficients of the forms, including a new series expansion for the divisor function.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.