Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Positive Positive Definite Discrete Strong Almost Periodic Measures and Bragg Diffraction (1209.2168v1)

Published 10 Sep 2012 in math-ph and math.MP

Abstract: In this paper we prove that the cone $\PPD$ of positive, positive definite, discrete and strong almost periodic measures has an interesting property: given any positive and positive definite measure $\mu$ smaller than some measure in $\PPD$, then the strong almost periodic part $\mu_S$ of $\mu$ is also in $\PPD$. We then use this result to prove that given a positive weighted comb $\omega$ with finite local complexity and pure point diffraction, any positive comb less than $\omega$ has either trivial Bragg spectrum or a relatively dense set of Bragg peaks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)