2000 character limit reached
An Algebraic Approach for Decoding Spread Codes (1107.5523v4)
Published 27 Jul 2011 in cs.IT and math.IT
Abstract: In this paper we study spread codes: a family of constant-dimension codes for random linear network coding. In other words, the codewords are full-rank matrices of size (k x n) with entries in a finite field F_q. Spread codes are a family of optimal codes with maximal minimum distance. We give a minimum-distance decoding algorithm which requires O((n-k)k3) operations over an extension field F_{qk}. Our algorithm is more efficient than the previous ones in the literature, when the dimension k of the codewords is small with respect to n. The decoding algorithm takes advantage of the algebraic structure of the code, and it uses original results on minors of a matrix and on the factorization of polynomials over finite fields.