Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group (1002.1634v1)

Published 8 Feb 2010 in hep-th and math.NT

Abstract: We show that correlators of the hermitian one-Matrix model with a general potential can be mapped to the counting of certain triples of permutations and hence to counting of holomorphic maps from world-sheet to sphere target with three branch points on the target. This allows the use of old matrix model results to derive new explicit formulae for a class of Hurwitz numbers. Holomorphic maps with three branch points are related, by Belyi's theorem, to curves and maps defined over algebraic numbers $\bmQ$. This shows that the string theory dual of the one-matrix model at generic couplings has worldsheets defined over the algebraic numbers and a target space $ \mP1 (\bmQ)$. The absolute Galois group $ Gal (\bmQ / \mQ) $ acts on the Feynman diagrams of the 1-matrix model, which are related to Grothendieck's Dessins d'Enfants. Correlators of multi-matrix models are mapped to the counting of triples of permutations subject to equivalences defined by subgroups of the permutation groups. This is related to colorings of the edges of the Grothendieck Dessins. The colored-edge Dessins are useful as a tool for describing some known invariants of the $ Gal (\bmQ / \mQ) $ action on Grothendieck Dessins and for defining new invariants.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.